Midterm Exam

MAS501 Analysis for Engineers, Spring 2011

♠ 공지사항 ♠

- 휴대전화는 진동으로 맞춰 주시고 시간을 확인하는 용도로만 사용해 주십시오.
- 학번과 이름을 기입하신 후 답안지는 양면으로 작성해 주십시오.
- · 강의 및 숙제를 통해 피드백 해드린 내용을 잘 이해하셨으리라 믿고 중간고사 채점은 숙제 채점보다 엄격히 할 예정입니다. 우아하고 정확한 답안을 기대하겠습니다.
- 0. (5pts) 기말고사 날짜 및 시간 선정에 관한 설문조사입니다. 5월 23일-27일 학기말 시험 기간 동안 중 월요일, 수요일, 금요일 오전 9시나 오전 10시에 두 시간 동안 기말고사를 보려 합니다. 불가 능한 요일과 시간을 적고 엑스 표시를, 가능하지만 원하지 않는 요일과 시간을 적고 세모 표시를 해주세요.
- 1. (20pts) Determine whether the following statements are true or false. (You don't need to prove or disprove.) If you are correct, you gain two points. If you are wrong, you *lose* two points. If you don't write the answer, nothing happens.
 - (a) If you are the Batman, I'm the Superman. (I'm assuming you're not the Batman.)
 - (b) The set of all polynomials with rational coefficients is countable.
 - (c) Suppose E is a subset of the metric space Ω . Then $x \in \overline{E}$ if and only if there is a sequence of points $x_n \in E$ with $x_n \to x$.
 - (d) A countable intersection of open sets is open.
 - (e) Let A and B be nonempty sets of real numbers. Then

$$\inf(A+B) = \inf A + \inf B$$

where $A + B := \{a + b : a \in A, b \in B\}.$

- (f) Every Cauchy sequence is bounded.
- (g) Let $\{a_n\}$ be a sequence of real numbers. If $\sum a_n$ converges absolutely, then

$$\limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1.$$

(h) If $f: \Omega \to \Omega'$ and $\{A_i\}$ is an arbitrary family of subsets of Ω , then

$$f\left(\bigcap_{i} A_{i}\right) = \bigcap_{i} f(A_{i}).$$

- (i) If $f : \mathbf{R} \to \mathbf{R}$ is differentiable everywhere, then f' cannot have a simple discontinuity.
- (j) Suppose that $f : \mathbf{R} \to \mathbf{R}$ is differentiable everywhere and

$$\lim_{x\to\infty} \left(f(x) + f'(x)\right) = 1.$$

Then $\lim_{x\to\infty} f(x) = 1$.

- 2. Let $\{x_n\}$ be a sequence in the metric space Ω . Prove the following statements:
 - (a) (10pts) If $x_n \to a$ and $x_n \to b$ then a = b.
 - (b) (10pts) If $\{x_n\}$ is Cauchy with a subsequence converging to x, then $x_n \to x$.
- 3. (15pts) Let f be a continuous mapping from Ω to Ω' , where Ω and Ω' are metric spaces. Show that if Ω is compact and $\{x_n\}$ is a Cauchy sequence in Ω , then $\{f(x_n)\}$ is a Cauchy sequence in Ω' .
- 4. A very special agent DiNozzo proved the following generalized Bolzano-Weierstrass theorem: "Let x_1, x_2, \cdots be a bounded sequence in the metric space Ω . Then there is a subsequence x_{n_1}, x_{n_2}, \cdots converging to a point x in Ω ."

DiNozzo's proof. We may assume that all the x_n belong to a fixed closed ball $C_r(a)$. By the Heine-Borel theorem, $C_r(a)$ is compact, and the result follows from the compactness of $C_r(a)$.

- (a) (5pts) What is wrong with his argument?
- (b) (10pts) Give a metric space in which the *generalized* Bolzano-Weierstrass theorem is wrong. You don't need to prove your space is a *metric* space. But you should prove that the theorem is not true in your space.
- 5. (10pts) Let $\{a_n\}$ be a sequence of positive real numbers. Prove that

$$\limsup_{n \to \infty} \left(\frac{a_{n+1}+1}{a_n} \right)^n \ge 1.$$

- 6. (15pts) Suppose
 - (a) $f:[0,\infty)\to \mathbf{R}$ is continuous.
 - (b) f'(x) exists on $(0, \infty)$.
 - (c) f(0) = 0.
 - (d) f'(x) is increasing on $(0, \infty)$.

Prove that f(x)/x is increasing on $(0, \infty)$.

Bonus! (5pts) Find an increasing function in **R** whose set of discontinuities is precisely **Q**. (DO NOT justify your answer.)